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Magnetization reversal is a well-studied problem with obvious applicability in computer hard drives. One
can accomplish a magnetization reversal in at least one of two ways: application of a magnetic field or through
a spin current. The latter is more amenable to a fully quantum-mechanical analysis. We formulate and solve the
problem whereby a spin current interacts with a ferromagnetic Heisenberg spin chain, to eventually reverse the
magnetization of the chain. Spin flips are accomplished through both elastic and inelastic scattering. A conse-
quence of the inelastic-scattering channel, when it is no longer energetically possible, is the occurrence of a
nonequilibrium bound state, which is an emergent property of the coupled local plus itinerant spin system. For
certain definite parameter values the itinerant spin lingers near the local spins for some time, before eventually
leaking out as an outwardly diffusing state. This phenomenon results in spin-flip dynamics and filtering
properties for this type of system.
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I. INTRODUCTION

Most current computer hard drives utilize a technology
for memory storage which requires a switching of states in-
volving magnetized spin. This switching is accomplished
through the application of magnetic fields in appropriate di-
rections. A theoretical understanding of this process is at-
tained reasonably well through a classical description via the
Landau-Lifshitz-Gilbert equations.1,2 These equations consti-
tute a phenomenological description, since the required
damping, whose analytical form is even under some debate,3

has various possible origins.
Just over a decade ago, however, theoretical proposals

were made to accomplish magnetization switching through
spin transfer from applied spin currents to magnetized
spins.4,5 A semiclassical description was used: the spin cur-
rent was described by a plane wave while the magnetized
thin film that was to be flipped was described through a
classical magnetization vector. This problem became known
as the “spin-torque” problem; the incoming spin current ex-
erts a torque on the local magnetization. It is noteworthy that
in this problem a phenomenological damping mechanism is
not required to torque the magnetization in the direction of
the incoming spin current—whereas the use of a magnetic
field leads only to precession unless some damping mecha-
nism is introduced. The experimental observation of the
spin-torque effect has met with some limited success.6–9

Recently, a direct measurement of the spin-torque vector
depending on the voltage has been made.10 Furthermore, the
results of this experiment imply that inelastic tunneling has
an important effect on the spin-transfer torque. In fact, it
appears that inelastic processes in the spin-flip scattering are
inherent11 for ferromagnetic systems. In order to realize prac-
tical applications of the spin-torque phenomenon, it is impor-
tant to reduce the critical current required to reverse the mag-
netization of ferromagnets. A couple of experiments12,13 have
demonstrated experimental methodologies to decrease the
critical current. As another signature of spin transfer, spin-

torque-induced magnetic vortex phenomena are also
observed.14–16

The semiclassical picture seems to work well in a practi-
cal sense.17–21 However, especially from a theoretical point
of view, some aspects are missing. Ultimately, spin transfer
is a quantum-mechanical scattering problem, generally in-
elastic, and so one would like to understand the spin-transfer
process in terms of excitations of the ferromagnet. Moreover,
recent experimental work22 has focused on the impact of a
spin current on cobalt nanoparticles with diameter less than 5
nm, which can be used to examine the spin torque exerted on
isolated nanoparticles. It has also been shown that it is ex-
perimentally feasible to manufacture magnetic nanostruc-
tures �chains of 2–10 coupled atoms�.23 In this case, only a
fully quantum-mechanical description will suffice because
the quantum nature of the spin operator representing the sta-
tionary spins in the nanoparticle is significant.

The scenario of an incoming �electron� spin, often mod-
eled as a wave packet, whose spin degree of freedom is
coupled with local spins, has been advanced by a number of
workers.24–29 The coupling between the incoming spin and
the local spins is Kondo type while the local spins are them-
selves ferromagnetically coupled via a Heisenberg exchange
interaction. The model Hamiltonian is

H = − t0 �
�i,j��

ci�
† cj� − 2�

�=1

Ns

J0�� · S� − 2 �
�=1

Ns−1

J1S� · S�+1,

�1�

where ci�
† creates an electron with spin � at site i, S� is a

localized spin operator at site �, and t0 is the hopping ampli-
tude between nearest-neighbor sites. The first term allows an
electron �of either spin� to propagate in a band that covers all
space �here in one dimension� while the second term is re-
sponsible for the Kondo-type interaction between the elec-
tron and the local spins, with coupling constant J0. This takes
place over a finite chain of length Ns. Finally, the last term
models the Heisenberg exchange interaction with strength J1
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between the local spins. For a ferromagnetic chain, J1�0.
Note, moreover, that if so desired, both J0 and J1 can depend
on the position of the local spin within the finite chain. Fig-
ure 1 shows a schematic of this model.

The use of a wave packet to describe the incoming spin
degree of freedom, and the subsequent “real-time” analysis
of the scattering process allows us to examine the entire scat-
tering process with very fine spatial and temporal resolution.
While the present-day experimental capabilities do not quite
match this fine resolution, we anticipate that probing on the
time and length scales we use will be accessible in the near
future. In particular, in this work we identify a feature which
we call a “nonequilibrium bound state” �NEBS�, whose char-
acteristics would require careful experimental detection. This
phenomenon results because of an inelastic-scattering pro-
cess that is suppressed due to energy conservation. While an
analytical approach does reveal some of the properties of a
NEBS, the numerical wave-packet calculations really allow
us to see the nonequilibrium aspect of this phenomenon.
Both calculations are presented here.

This paper is organized as follows. In the following sec-
tion we outline means by which we solve the time-dependent
problem. Some of our earlier work25,27,30 used straightfor-
ward expansions in the basis states spanning the product Hil-
bert space of electrons moving on a lattice and stationary
spins confined to a small portion of that same lattice. The
present work uses a different method; the exponentiated
Hamiltonian operator is expanded in a series utilizing
Chebyshev polynomials.31 This allows us to easily generate
large scale numerical results, as described in Sec. III. We
formulate the problem for an arbitrary number of stationary
spins �in principle, representing a magnetized thin film,
whose magnetization is being flipped� but focus on two in-
teracting stationary spins. This allows us to focus on the
characteristic features of the larger system, including the
NEBS, without the considerable complexity generated by the
many scattering channels present when more than two sta-
tionary spins are used. Snapshots of the propagating wave
packet reveal that in a particular region of parameter space
part of the wave-packet “lingers” near the stationary spins.
This feature is a signature of the NEBS.

In Sec. IV we develop an analytical approximation to de-
scribe the same scattering process in the continuum limit. A
preliminary decomposition of the problem, into less familiar

but more useful basis states, allows us to readdress the nu-
merical results of Sec. III. This analysis identifies the NEBS
with the position-dependent amplitude of one of these basis
states. We further develop the analytical approximation to
derive this amplitude, along with expectation values for the
amount of spin flip expected. Thus, while we lose the trans-
parency of the time-dependent �i.e., nonequilibrium� aspect
of the problem, we clarify some of the physics of the bound-
state part. In Sec. V we conclude with some discussion con-
cerning experimental observation of this NEBS.

II. THEORY

We adopt the most straightforward approach to the scat-
tering problem and study the time evolution of a wave
packet, defined, at t=0, as

��x� =
1

�2�a2
eik�x−x0�e−�x − x0�2/2a2

. �2�

The calculation can take several routes at this stage. Consis-
tent with the tight-binding formulation, Eq. �1�, one can de-
fine a Hilbert space �with either open or periodic boundary
conditions left of the wave packet and far to the right of the
local spins�, with typically hundred’s of lattice sites on which
the itinerant spin �hereafter referred to as the electron or
electron spin� can hop �see Fig. 1 for a schematic�. One can
diagonalize Eq. �1� on this Hilbert space and find the com-
plete spectrum of eigenstates and eigenvalues with which
one can construct the time evolution of the wave
packet.26,27,30 However, we find that the parameter regime
and maximum possible size of the local-spin chain, for ex-
ample, is severely restricted by computational expense
within this approach.

Instead we choose to solve the time dependence directly,
using the formal solution

��x,t� = e−iĤt��x� . �3�

A practical implementation of this solution is through the
series expansion

e−iĤt = �
n

anŶn, �4�

where an are the coefficients of a complete orthonormal set
of functions denoted by Yn. A very useful basis is provided
by the Chebyshev polynomials, Tn�x��cos�n cos−1 x�, with
T0�X�=1, T1�X�=X, and Tn�X�=2XTn−1�X�−Tn−2�X�.31 For
this expansion to be useful, the argument X �here, a matrix�
is required to have norm less than unity so a scaled version
of the Hamiltonian is required �accompanied by a scaled
time variable�,

e−iĤt = e−i�Ĥ/���t = �
n=−�

�

an��t�Tn�−
Ĥ

�
	 = �

n=−�

�

an�y�Tn�x� ,

�5�

where y=�t and x=−� Ĥ
� �.

There are two reasons for choosing this particular basis.
First, the coefficients an�y� can be written simply as32

t0 t0 t0 t0 t0 t0 t0

S1 S2

J1

J0 J0

σ

FIG. 1. �Color online� A schematic of a lattice, on which an
itinerant spin can hop �with hopping parameter t0�; it can interact
with two stationary spins 
indicated by downward pointing �red�
arrows� with coupling strength J0. The two stationary spins can
interact with one another, with coupling strength J1.
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an�y� =
1

�
�

−1

1 dx
�1 − x2

Tn�x�e�ixy� = inJn�y� , �6�

where the Jn�y� are Bessel functions of the first kind. Second,
these polynomials have a recursion relation that allows us to
use a more compact calculation of the expansion of the ex-
ponential of the Hamiltonian,

Tn+m�x� = 2Tn�x�Tm�x� − Tn−m�x� . �7�

Using this equation we can rewrite the expansion up to a
given order, N2 as33

ei�Ĥ/���t � �
0

N2

aiTi = �
0

N

bi
0Ti + TN��

1

N

bi
1Ti + . . .

+ TN��
1

N

bi
kTi + . . . + TN�

1

N

bi
N−1Ti	 . . .� �8�

with

bi
k = �

j=0

N−k

�mod�j,2� � A�j + k,k�a
�j+k+1��N−i� + mod�j

+ 1,2� � A�j + k,k�a
�j+k��N+i�� �9�

and the matrix elements A�i , j� are defined by

A�i, j� = �A�i − 1, j� + 2 � A�i − 1, j − 1� mod�i − j,2� = 0

− A�i − 1, j� mod�i − j,2� = 1

0 i � j
�

�10�

with A�0,0�=1.
This formulation allows for an efficient evaluation of the

time evolution of the wave function, such that large lattices
can be studied, both for the electron spin and for the station-
ary spin chain.

III. NUMERICAL RESULTS

A. Noninteracting stationary spins

The result of a typical calculation is illustrated in Fig. 2.
Here, we have used 1600 lattice sites, and, at t=0 we have
“launched” a wave packet centered around site 700 with a
width given by a=30. The unit of length is the lattice spac-
ing, which we take to be unity for convenience. In all our
figures we also take t0�1 as our energy scale. All our results
will utilize an initial electron wave vector k=� /2 so that no
wave-packet broadening occurs.30 The incoming electron
spin has S=1 /2, and, in the calculations in this paper, the
stationary spins have S=1 /2. A series of snapshots is shown
as time progresses forward. Initially only the incoming elec-
tron with a spin-up component is present, represented as a
Gaussian wave-packet 
shown as a solid �red� curve for the
first time slice at the bottom�. The initial conditions are such
that all stationary spins �not shown but situated at sites 800
and 801� have Sz=−1 /2 and the incoming electron spin has
Sz=1 /2. As time advances the electron spin interacts with the

stationary spins and scatters. If there was only one stationary
spin, the scattering would lead to 4 possibilities for the elec-
tron wave packet:25 it can either be reflected or transmitted,
with either spin up or spin down. With two �or more� inter-
acting stationary spins, inelastic scattering is also possible.
The choice of parameters in Fig. 2 is such that the result is
similar to that expected from a single spin �J1=0 here�; after
interacting with the local spins the wave packet both reflects
and transmits with both spin components. The scattering is
elastic which means the associated wave vectors are 	� /2
so that no spreading of the wave packet occurs as time
progresses �there is some intrinsic spread because two neigh-
boring scattering sites are involved�.

The “final state” of both the electron and the local spins is
readily defined by waiting for a period of time after which
the various electron components have separated a reasonable
distance from the local spins. This is clear from the figure
�the latest times shown clearly fulfill the above requirement�
but we will encounter special parameter regimes where this
definition is not so clear, to be discussed later.

B. “N” interacting stationary spins

At the outset we wanted to understand how a �macro-
scopically� long spin chain interacts with an incoming elec-
tron spin to understand the effect of a spin current on a
magnetic layer. With the technology discussed in Sec. II for
treating the time evolution of a coupled electron-spin/local-
spin system, the study of reasonably long spin chains is in-
deed possible. However, the impact on the spin chain is suf-
ficiently complex that this program was deemed overly
ambitious for the present, even if we simply examine the
impact on the electron spin as it emerges from the spin chain.
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FIG. 2. �Color online� Time evolution of an electron wave
packet, interacting with two local spins �located at sites 800 and
801�. For the electron spin we use a tight-binding model with
nearest-neighbor hopping only; for reasons discussed in the text we
use k=� /2. For this figure the coupling with local spins is given by
J0=2.0t0 and the coupling between local spins is set to zero �J1

=0�. The choice J1=0 causes the time evolution of the electron spin
to closely resemble the one with a single local spin previously re-
ported in Ref. 25. Subsequent time slices are displaced vertically for
clarity.
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Looking at “long times” after the interaction, the complexity
in a series of figures such that in Fig. 2 for various values of
J0 and J1 is enormous. The summary of such a plot is shown
in Fig. 3, where the value of the z component of the electron
spin is shown after interaction with a spin chain consisting of
20 coupled S=1 /2 spins. As a function of the interaction
parameters J0 and J1 there are quite a number of visible
ripplelike structures which no doubt are related to the exci-
tations that are populated through the inelastic-scattering
channels. This interpretation is reinforced by the observation
that, for smaller spin chains, the number of ripples is re-
duced, as the number of possible internal excitations is re-
duced. Slices for fixed values of J0 are illustrated in Fig. 3�b�
and again it is difficult to interpret all the various ripples. For
this reason we focus, in the rest of this paper, on the simpler
system where there are only two coupled local spins.

C. Two interacting stationary spins: Inelastic scattering

We first examine the long-time behavior of the electron
spin. Figure 4 illustrates �in a color plot� the z component of
the electron spin once it has essentially left the vicinity of the
two local spins, as a function of the Kondo coupling between
electron spin and each local spin, J0, and the coupling be-
tween local spins, J1. Curves are shown for the same quantity
in Fig. 4�b�, for specific values of J0, as shown; these corre-
spond to horizontal sweeps across the first plot. In Fig. 5
vertical sweeps across the first plot in Fig. 4 are shown,
along with the result for a single local spin.25 The sweeps are
plotted for extreme values of J1 and avoid the complicated
region characterized by a “trough” �colored dark� of signifi-
cant spin flip rising upward to the right, and leaving the plot
area at �J1 ,J0���4,10�t0. This trough region will be dis-
cussed in detail in Sec. III D.
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FIG. 3. �Color online� �a� The z component of the electron spin long after the electron wave packet has interacted with the local spins,
as a function of both electron-spin coupling J0 and spin-spin interaction J1 for 20 local spins. The outcome is sufficiently complicated that
we will focus on the problem with only two local interacting spins hereafter. �b� Slices are plotted as a function of J1 for various values of
J0. As shown considerable complexity exists even in these plots.
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FIG. 4. �Color online� �a� As in Fig. 3, the z component of the electron spin long after the wave packet has interacted with the local spins,
as a function of both electron-spin coupling J0 and spin-spin interaction J1 for two local spins. This plot is discussed extensively in the text.
Note the horizontal band of strong spin flip �dark colored� centered around J0=2t0, broken only near J1�1.0t0. Smaller J1 values result in
independent behavior by the two localized spins while larger values of J1 result in strongly coupled behavior by the two local spins. A
prominent but very slight change occurs along the vertical line at J1=1t0, and a very obvious trough �i.e., a valley as far as the z component
of the electron spin is concerned� of spin flip occurs as shown �in dark color� sloping up toward the right and exiting the graph at
�J1 ,J0���4t0 ,10t0�. �b� Slices are plotted as a function of J1 for various values of J0. For J0=5t0 ,8t0 there is a definite valley corresponding
to the dark trough just mentioned in the first plot while, for J0=2t0, the behavior is more complicated.
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A considerable amount of information is contained in Fig.
4. The horizontal band of strong spin flip �dark� centered
around J0=2t0 is further illustrated for specific values of J1
in Fig. 5, as a function of J0 
the dark horizontal band in Fig.
4�a� corresponds to the minima visible in Fig. 5�. Whether or
not the local spins are strongly coupled, the net effect on the
electron spin is similar, and in qualitative agreement with
what happens when only a single localized spin is present25


solid �red� curve in Fig. 5.� As already described for a single
local spin,25–27,30 the maximum spin flip occurs near J0=2t0;
for very small values or very large values of J0 the impact on
the electron spin goes to zero.

The reaction of the local spins does depend on the value
of the coupling between local spins, as illustrated in Fig. 6,
where the z component of the two local spins are shown as a
function of time for various values of J1. For zero coupling
they react independently �except the second local spin “sees”
only part of the incoming electron spin because it has already
scattered and spin-flipped off the first� while for low cou-
pling some precession occurs. At high values of the coupling,
the two local spins are essentially locked together.

Referring again to Fig. 4, a subtle change occurs as J1
passes through t0 for all values of J0� t0; this is more clearly
seen in Fig. 4�b�, where a small rise occurs in the z compo-
nent of the electron spin as J1 / t0 crosses unity. For J0=2t0
the increase is considerable, followed by a peak and then a
monotonically decaying result. This is in contrast to the other
two curves which also show a minimum. In fact these two
curves are more “generic;” inspection of Fig. 4�a� shows that
J0=2t0 passes right through the middle of the dark band
which was discussed above. This region of the J0−J1 phase
diagram is fairly complicated—the three energy scales are all
similar in size and no simple picture emerges.

Focusing on the larger values of J0, the small increase in
the z component of the electron spin shown in Fig. 4�b� 
also

visible in Fig. 4�a� as a faint but abrupt break along the
vertical line J1= t0� can be understood as follows. First note
that this increase signals a decrease in the spin-flip interac-
tion. Recall that the electron spin is propagated with wave
vector k=� /2. This means that its kinetic energy is effec-
tively 2t0—the dispersion relation 
�k�=−2t0 cos�ka� gives

�k=� /2�=0 but 2t0 is the energy with respect to the bottom
of the band. Thus, the electron has a maximum energy 2t0
that can be deposited into the local-spin system through the
Kondo-type coupling J0. On the other hand, for a two spin
system there is only one nonzero excitation energy—it is
Eex=2J1—and this is essentially the spin-wave energy for a
two spin system, as can be readily ascertained from the so-
lution to the problem of two ferromagnetically coupled
Heisenberg spins.34 For J1� t0 this mode of inelastic scatter-
ing is no longer possible, so the amount of spin-flip scatter-
ing decreases, as indicated in the figures.

An explicit demonstration of this mode of scattering is
provided in Fig. 7, where a series of snapshots of the electron
wave packet is shown as a function of position. In contrast to
Fig. 2 a second set of peaks is evident, all in the spin-flip
channel �i.e., z component of electron spin is −1 /2� moving
more slowly �hence inelastic scattering� both to the left �re-
flection� and to the right �transmission�. As J1→ t0 the speed
of this wave packet approaches zero �so the extra wave pack-
ets will appear almost vertically in a plot like Fig. 7�. For
more and more coupled local spins many more inelastic
channels are available for scattering, which in part explains
the complexity in Fig. 3.

D. Two interacting stationary spins: The NEBS

The most striking feature in Fig. 4 is the trough �dark
colored� that extends upwards to the right and exits the graph
at �J1 ,J0���4,10�t0. This trough represents a domain in the
coupling space in which the spin-flip interaction persists
more than expected and is roughly associated with a “reso-
nance” behavior. The evidence for this is very difficult to
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FIG. 5. �Color online� The z component of the electron spin
long after it has interacted with the local-spin system, as a function
of the Kondo coupling J0. The solid �red� curve is the result for a
single local spin with S=1 /2 �Ref. 25�. Note that the maximum spin
flip occurs at an intermediate value of J0�2.3t0 �Ref. 25�; when
two local spins are present the result is similar, whether they are
noninteracting �J1=0� or strongly interacting �J1=10t0�. As one
would expect the degree to which the incoming electron can reverse
its spin is much higher when interacting with more than one local
spin.
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FIG. 6. �Color online� The z component of the two local spins
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glean from the numerical calculations—we will have more to
say based on analytical work to be presented in the next
section. Nonetheless, examination of the numerical results
for a particular set of parameters on a logarithmic scale
shows an unusual feature, as illustrated in Fig. 8, for rela-

tively high parameter values of electron-spin coupling,
�J1 ,J0�= �3.1,8�t0. On this scale the Gaussian wave packets
are outside the displayed region at the latest times shown
�note that time progresses as one moves down from curve to
curve, opposite to the progression shown in previous plots�.
The feature in question is the rather small peak located at the
local-spin sites �near site 800 and 801� that persists, albeit
with strongly diminishing amplitude, for all times shown.
This peak forms only for the spin-down component of the
electron; its amplitude decays away in both spin channels
presumably through a diffusive process so eventually the
electron has scattered entirely. We refer to this state as a
NEBS; this name will be further justified in the next section.

In Fig. 9 we show the various components of the local
spins as a function of time, along with the electron spin. The
Sx and Sy components remain fixed at zero �because of the
initial conditions on these spins25� while the Sz components
flip partially and remain at the same value long after the
flipping process has terminated. In the intermediate stages,
however, they are not locked together, and remarkably, the
second spin flips before the first. This reversal of the ex-
pected order of flipping occurs only for parameters in the
trough region; otherwise the local spin first encountered by
the incoming electron spin is the first to flip. While this phe-
nomenon is clearly connected to the NEBS, we do not have
a simple explanation for the spin-flip reversal.

These results illustrate the variety of different behavior
possible for the spin-flip scattering process as a function of
J0 and J1. We now turn to an analytical approach to gain
some further insight into the problem.

IV. ANALYTICAL PLANE-WAVE APPROXIMATION

A. A change in basis

The problem of an incident spin represented as a plane-
wave scattering off of an impurity with a contact Kondo-type
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FIG. 7. �Color online� A series of snapshots of the electron wave
packet, with both spin up �solid, red curves� and spin down �dashed,
green curves�. Note that spin-down components are scattered both
elastically �same speed as incoming wave packet� and inelastically
�slower speed, indicated by a more vertical profile on this plot�. The
scattering occurs off of two local spins, located at sites 800 and 801,
ferromagnetically coupled with J1 / t0=0.8; we used J0 / t0=2.0.

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

760 780 800 820 840

n i

site index i

Time

spin up
spin down

FIG. 8. �Color online� A series of snapshots of the electron wave
packet, with both spin up �solid, red curves� and spin down �dashed,
green curves�. Note that time progresses forward as one moves
from curve to curve downward, and also note the logarithmic scale
for the ordinate. By the last times shown the usual Gaussian wave-
packet peaks have disappeared off to the sides; what remains, how-
ever, is a small peak located near the local spins. We refer to this as
a NEBS; justification for this name will come in the next section.
Note that this small peak exists only in the flipped spin channel. The
scattering occurs off of two local spins, located at sites 800 and 801,
ferromagnetically coupled with J1 / t0=3.1 and with a Kondo-type
coupling J0 / t0=8.0; with reference to Fig. 4 these parameters place
us in the middle of the dark colored trough of enhanced spin-flip
scattering.
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FIG. 9. �Color online� The Sx, Sy, and Sz components of the two
local spins for the parameter set discussed in the previous figure.
Note that Sx and Sy remain equal to zero �due to the initial condi-
tions, as explained in Ref. 25� while the Sz components change,
although in reverse order than one would naively expect. This is an
instance where the classical notion of a “spin vector” that rotates
into the direction of the spin current while maintaining a constant
magnitude is completely inapplicable.
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spin-spin interaction was solved analytically in Ref. 25. In
that problem we made use of the initial conditions and con-
servation of angular momentum to simplify the problem.
Here we do the same and utilize initial conditions such that
the Sz component of the incoming electron spin is +1 /2
while those of the two stationary spins are each −1 /2.

The one-dimensional version, written in free space, has a
Hamiltonian which can be written as

H = −
�2

2m

d2

dx2 − 2J0
�̂ · Ŝ1��x� + �̂ · Ŝ2��x − a�� − 2J1Ŝ1 · Ŝ2.

�11�

The wave function for this problem consists of a spatial com-
ponent which describes the electron-spin amplitude and a
spin part which describes the spin state of the incoming elec-
tron and the two stationary spins �here located at positions
x=0 and x=a�. The Hilbert space concerning the spin de-
grees of freedom has an overall size of 23=8 �for S=1 /2
spins� However, utilizing the conservation of total Sz reduces
this number to 3. As already stated, the initial state, in Dirac
notation, is ↑↓↓�, where the first arrow represents the z com-
ponent of the electron spin, and the next two arrows indicate
the respective z components of the two local spins. Once the
electron spin interacts with the local spins, two more spin
states are possible, ↓↑↓� and ↓↓↑�. In our numerical re-
sults, we followed two separate routes: in cases with the
initial configuration as depicted here, we used this fact to
reduce the Hilbert space to these three spin states, which
sped up the calculations considerably. Alternatively, when
the initial configuration was not so straightforward �and did
not have a definite total Sz, for example�, we used all eight
basis states.

When we begin with an initial configuration such as
↑↓↓�, we can combine these spin states into combinations
with both good total Sz and good total S to give rise to the
following basis set:35

�1� =
1
�3

�↓↓↑� + ↓↑↓� + ↑↓↓�� , �12�

�2� =
1
�6

�↓↓↑� + ↓↑↓� − 2↑↓↓�� , �13�

�3� =
1
�2

�↓↓↑� − ↓↑↓�� . �14�

Writing the wave function as

��x�� = h�x��1� + f�x��2� + g�x��3� , �15�

then appropriate projection on to the spin basis states results
in the three equations,

−
�2

2m

d2h

dx2 − 2J0
�2

4

��x� + ��x − a��h = 
elh , �16�

−
�2

2m

d2f

dx2 + J0
�2

2

��x��2f − �3g� + ��x − a��2f + �3g�� = 
elf ,

�17�

−
�2

2m

d2g

dx2 − �3J0
�2

2

��x� − ��x − a��f = �
el − 2J1�2�g ,

�18�

where 
el is the kinetic energy of the incoming electron. Note
that the first equation results from the Stot=3� /2 sector, and
remains decoupled, while the second two are part of the
Stot=� /2Stotz=−� /2 doublet. The state with spatial wave
function g�x�, governed primarily by the third equation, ex-
ists exclusively because of the possible inelastic-scattering
process. Equation �14� indicates that it contains only the
spin-down component of the scattered electron, and, given
our initial conditions, exists only after scattering. It is “fu-
eled” through the f�x� component, which, as Eq. �13� indi-
cates, contains a component corresponding to the incoming
electron spin �with �z=+� /2�. That the g�x� component cor-
responds to inelastic scattering is indicated by the eigenvalue
on the right-hand side of Eq. �18�, with value 
el−2�2J1,
which shows that an energy 2�2J1 is left behind in the form
of a spin-wave excitation in the local-spin system, as ex-
plained in the previous section. The first two equations, Eqs.
�16� and �17�, each have eigenvalue 
el, showing that the
kinetic energy of the incoming electron is conserved �elastic
scattering�. Note that this still results in spin-flip scattering; it
is just that the two local spins are scattered by the same
amount so that they remain in their coupled ground state.

B. A re-examination of the numerical solutions

Equations �16�–�18� can be readily solved analytically
and we will come to that solution shortly. However, already
Eqs. �12�–�14� serve the important task of directing our at-
tention to specific linear combinations of the spin states, as
indicated. The numerical solutions presented in the previous
section were classified only according to the z component of
the electron spin. We now essentially replot those results, as
separate amplitudes h�x�, f�x�, and g�x�, in Fig. 10. Note that
Eqs. �16�–�18� were derived for the continuum model de-
fined by Eq. �11�; nonetheless the role of the various ampli-
tudes, described at the end of Sec. IV A, applies equally well
to the numerical results of the original tight-binding model.

To demonstrate this, in Fig. 10�a� we plot the magnitude
h�x�2 vs position for a number of time slices, for three dif-
ferent values of J1. As predicted by Eq. �16�, there is no
dependence on J1. It is important to note that these results
still represent numerical solutions to the tight-binding model
presented in the previous section; while we could have used
the spin components as listed in Eqs. �13� and �14� as a basis
set, these numerical solutions do not “use” the analytical
structure of Eqs. �16�–�18�. Hence only one set of curves is
visible �for J1=1.4t0� as this set is identical to and covers
entirely the sets corresponding to the other two values of J1.

In contrast, the other two components, plotted in Figs.
10�b� and 10�c�, are dependent on the value of J1. In both
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cases the amplitudes of transmitted and reflected wave
packet depend quantitatively on the value of J1. Note, more-
over, that the amplitude g�x� has no “incoming” wave
packet. As explained earlier this amplitude is generated en-
tirely by the scattering process. Also note that for J1 / t0�1
�i.e., J1 / t0=0.8 in Fig. 10� the slow moving piece belongs
entirely to g�x� while the fast moving one belongs entirely to
f�x�.

To see the role of the g component of the state more
clearly, we separate the two local spins by 20 sites and
project out the g component from the numerical solution,
using Eq. �15�. In Fig. 11 we show on a log scale the mag-
nitude of the g component, g�x�2 as a function of position;
the two local spins are now located at sites 790 and 810. The
parameters �J1 ,J0�= �3.1,8�t0 �solid curve� situate the regime
on the trough so apparent in Fig. 4 whereas �J1 ,J0�
= �3.1,2�t0 �dashed curve� puts one well away from the
trough. This snapshot is taken at a time when the
g-component amplitude is a maximum and it is clear that the
g component is almost two orders of magnitude larger on the
trough �solid curve� than off �dashed curve�. A similar result
holds for large values of J0.

C. Analytical solution

An analytical solution of the problem with plane waves
through Eqs. �16�–�18� is possible, though tedious. One de-
fines three regions in space and defines the wave function in
a piecewise continuous manner, as is done commonly in un-
dergraduate physics texts.

With k��2m
el /�2 and Q��2m�2�2J1−
el� /�2, the
wave function can be written as

h�x� = �hIe
ikx + uIe

−ikx, x � 0

hIIe
ikx + uIIe

−ikx, 0 � x � a

hIIIe
ikx, x � a

� , �19�

f�x� = � f Ie
ikx + rIe

−ikx, x � 0

f IIe
ikx + rIIe

−ikx, 0 � x � a

fIIIe
ikx, x � a

� , �20�

and
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FIG. 10. �Color online� The time evolution of the magnitudes �a� h�x�2, �b� f�x�2, and �c� g�x�2, as defined by the basis set, Eqs.
�12�–�14�. These plots apply for J0=2t0 and the values of J1 indicated. Note that in �a� the plots are identical for all three values of J1, as
motivated by the structure of Eq. �16�. In �b� and �c� differences are apparent; note that in �c� no amplitude is present before the time of
scattering, and, furthermore, as one enters the trough region �J1=1.4t0�g�x�2 consists of a single sharp peak near the local spins. In time this
peak diffuses outwards but there is no wave-packet component.
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g�x� = � gIe
Qx, x � 0

gIIe
−Qx + sIIe

Qx, 0 � x � a

gIIIe
−Qx, x � a

� . �21�

Four conditions relate the various coefficients defining h�x�
to the incoming amplitude hI in Eq. �19�; similarly eight
conditions determine the f and g coefficients in terms of the
incoming amplitude f I. The results for h�x� are standard and
can be found in many undergraduate texts while, for f and g,
the result is not standard but is nonetheless straightforward.
Also note that we have written the wave function for the
more relevant condition 2�2J1�
el, in which case the func-
tion g�x� is exponentially decaying; the alternative 2�2J1
�
el is straightforward and gives a propagating wave solu-
tion, with wave vector q=�2m�
el−2�2J1� /�2. This latter
case corresponds to the situation whereby a spin-wave exci-
tation is energetically allowed so that a spin-flipped wave
packet will emerge from the stationary spins at a reduced
speed, as we have already seen in the numerical solution in
Fig. 7.

When inelastic scattering is not allowed by energy con-
siderations, it is not clear what will happen. Our intuition
suggests that the stationary spins will respond as one and so
the spin-flip process will resemble that expected for scatter-
ing from a single spin 
which, as we demonstrated earlier, is
not so different from scattering off decoupled stationary
spins �J1=0��. Inspection of Fig. 4 shows that this is indeed
the case, except for the trough region previously identified. It
is precisely in this regime that a peculiar enhancement of
spin-flip scattering occurs, which we now argue is connected
to the effective bound state �NEBS� defined by Eq. �21�.

The solutions can readily be written down by using the
definitions, ��J0 /k and ��J0 /Q �the mass m is set equal to
unity�, and the terms v���1− 3�

4 �1−e−Qaeika�� and u���1

− 3�
4 �1−e−Qae−ika�� appear often. Note that for real Q these

are complex conjugates of one another. However, these ex-
pressions �and the ones immediately following� are valid for
high electron kinetic energy as well, where 
el�2J1, and so
it follows that Q=−iq with q now real, and u and v are no
longer complex conjugates of one another. We find, for ex-
ample,

gII

f I
=

�3

2
�

1 + iv − iue2ika

�1 + iv�2 + u2e2ika , �22�

with similar expressions for the other coefficients. To see
how effective the spin-flip process is, we can calculate either
the expectation value of the electron spin, ��z�, or the spin
torque, Nzx.

20 For the two local-spin system used here, the
latter is given in terms of the former as Nzx=k�1 /2− ��z��. As
in the earlier numerical results, the quantity ��z� will remain
near 0.5 �the initial electron-spin value� if very little spin flip
occurs whereas this quantity will deviate most from 0.5 �and
even become negative� when significant spin flip occurs.
Note that with the plane-wave solution given in Eqs.
�19�–�21�, the problem is no longer time dependent; one en-
visions a continual influx of current �this is f I� while reflected
and transmitted plane waves �of both spin type� take on
“steady-state” values.36

The calculation of ��z� is straightforward; we use an in-
tegration region −L�x�+L and we allow L→�. The plane-
wave regions outside the local-spin region then dominate,
and, for real values of Q, we obtain

��z� =
1

18
�5 − 4�2 Re�hIIIf III

� + uIrI
��� , �23�

while, for pure imaginary values of Q, the expression for
��z� is somewhat more complicated.

In Fig. 12 we show �a� ��z� and �b� gII2 as a function of
J1 and J0 to emphasize the connection between the region
�described as a trough� of enhanced spin-flip scattering and
the NEBS. The range of both J1 and J0 is considerably ex-
tended compared with Fig. 4; nonetheless the qualitative
similarities are striking; clearly the analytical solution cap-
tures the essence of the numerical one. Furthermore, the ana-
lytical approach has allowed us to make the association of
the trough of enhanced spin-flip scattering with the NEBS.
Quantitative details differ, in part because the numerical re-
sults are based on a tight-binding model whereas the analyti-
cal ones utilize a quadratic dispersion for the itinerant spin. A
specific example is given in Fig. 13, where both ��z� and
gII2 are plotted as a function of J0 �for a specific value of k
and J1�. Clearly the peaked region in gII2 �near J0�15�
corresponds to the dip in ��z�, showing strong evidence for
the role of the NEBS in enhanced spin-flip scattering. For
large values of J1�
el, Eq. �22� simplifies somewhat; we get

gII2 =
3

4
� J0

Q
	2sin2 ka + �cos ka + 2v sin ka�2

1 + 4v2�cos ka + v sin ka�2 , �24�

where v�
J0

k 
1− 3
4

J0

Q �. Similar analytical expressions can be
readily attained for all the coefficients but they are of limited
value.
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FIG. 11. �Color online� A plot of g�x�2 
see Eq. �15�� vs x. This
“snapshot” is taken immediately following the initial scattering of
the electron spin with the two local spins, situated at sites 790 and
810, i.e., they have been separated for clarity. We use J1=3.1t0 so it
is clear that for parameter values that fall on the trough �J0=8t0� the
component of the wave function associated with inelastic scattering

i.e., g�x�� is significantly enhanced �almost 2 orders of magnitude�
compared with the region away from the trough.
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The curve given by Eq. �24� is also plotted in Fig. 13,
where it is seen to be very accurate �in fact, it is fairly accu-
rate all the way down to J1�2�. The peak region in gII2
follows roughly a dispersion relation

J1 �

el

2
+

9

64
J0

2, �25�

and, as has been emphasized already, this corresponds to the
region of most intense spin-flip scattering �the “dark trough”
region of previous figures�. Thus, when J0 and J1 are tuned
to satisfy Eq. �25� we find an enhanced spin-flip process.

D. Transmission and reflection amplitudes from the numerical
solutions

Having established the idea of a NEBS we once again
re-examine the numerical solutions. In particular, one impor-
tant property from the experimental point of view is that the
stationary spins can act as a spin barrier. We have already
shown that a large electron-spin interaction �J0� works as a
high potential barrier for the incoming spin. In our frame-
work, for instance, a large electron-spin interaction acts to
prevent any spin-up component of the electron from trans-
mitting through the stationary spin system. However, in the
J0−J1 phase space, at the onset of the trough described, for
example, in Fig. 4, the transmitted component of the spin-up
�and spin-down� electron is enhanced considerably; this is
illustrated in the four plots shown in Fig. 14, where both
transmitted and reflected intensities are plotted as a function
of J0 and J1. As is clearly evident in �a� and �b�, the trans-
mission of both spin species is noticeably enhanced in the
trough region. Coincidentally the spin-up reflected compo-
nent is decreased while the spin-down reflected component
shows an increase. The increase in the transmitted spin-up
component of the electron is not through “direct” transmis-
sion. Rather it is achieved through the spin-flip interaction
that generates the component with amplitude g discussed in
Sec. IV B. Recall that in this parameter regime this g com-
ponent does not exist outside the local spins; it first trans-

forms into the component with amplitude f , which represents
a propagating wave with both spin-up and spin-down spe-
cies. These plots therefore reinforce the idea that the electron
goes through a two-step “virtual” spin-flip interaction �cre-
ation of the NEBS� in the trough region.

V. CONCLUSIONS

We have modeled spin-current-induced spin torque in the
quantum regime with a lattice, on which an itinerant spin
�constructed as a wave packet� moves with a kinetic energy
given by a tight-binding dispersion, to represent the spin cur-
rent. Any number of ferromagnetically coupled spins can
then be flipped by repeating the process described here with
more itinerant electrons, i.e., a current. As described in Ref.
26, this then requires a density-matrix description. We have

(b)(a)

FIG. 12. �Color online� �a� Plot of the expectation value of the z component of the electron spin, ��z�, as a function of the two coupling
parameters, J1 and J0, based on the plane-wave solutions to this problem. The range of J1 and J0 is considerably extended compared to Fig.
4 to emphasize the presence of the trough �shown in dark color� that extends upward and to the right. In �b� we show a plot for 1 /2
−0.2� gII2 / f I2 for the same parameters; the trough is immediately identifiable in this plot, which reinforces our contention that this region
of enhanced spin-flip scattering is associated with the NEBS represented by gII �a plot of sII yields similar results�.
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FIG. 13. �Color online� �a� Plot of ��z� 
solid �red� curve� vs J0

for specific values of J1 and k, as indicated. Also shown is the
coefficient gII2 
solid �green� curve�, which shows a peak precisely
where ��z� has a significant dip, indicative of enhanced spin-flip
scattering. Also shown �symbols� is the result of an approximate
analytical expression derived in the text. Agreement is extremely
good.
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focused on just two coupled local spins since this small sys-
tem contains the essence of the processes we believe are
responsible for spin torque: �i� direct spin flip without inter-
nal excitation of the local-spin system and �ii� spin flip
through inelastic scattering, either real or virtual. The first
process exists even for a single local spin and has been ex-
plored previously by us. The second process is the primary
subject of this paper, particularly in the regime where, ener-
getically, the itinerant spin becomes momentarily bound in
the local system, a phenomenon which we have called the
NEBS. The description here is for a one-dimensional system
but the NEBS should also be present in three dimensions.

An analytical plane-wave approach, using a parabolic dis-
persion for the itinerant spin, helps to elucidate the nature of
the spin-flip processes. A scattering channel through which a
local-spin singlet �i.e., �3�� is generated is responsible for
the enhanced spin-flip scattering along a trough in the �J0 ,J1�
phase diagram. This trough is reasonably well described in

the plane-wave approach by the relation J1=9J0
2 /64+
el /2.

An experimental observation of the NEBS would be
straightforward provided at least one of the parameters J0, J1,
or 
el can be tuned in a particular system. In this way the
probability of spin flip can be monitored as a function of
parameter space and the NEBS would be identified by a
well-defined region of enhanced spin flip, corresponding to
the trough in Fig. 4.

One interesting consequence of our calculation is the pos-
sibility of using the spin chain as an effective spin filter. By
tuning the parameters to correspond to the regimes of en-
hanced spin flipping, the spin-up electrons will be flipped
while the spin-down ones will be unaffected. This effect can
be achieved not only for the two-spin chain but also for the
longer chains, as shown in Fig. 3. The resonant trough pro-
vides a controllable spin filter through the interspin coupling
J1.
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FIG. 14. �Color online� The �a� transmitted spin-up, �b� transmitted spin-down, �c� reflected spin-up, and �d� reflected spin-down
intensities as a function of J0 and J1. These results are obtained with the same conditions as in Fig. 4. See the text for further description.
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